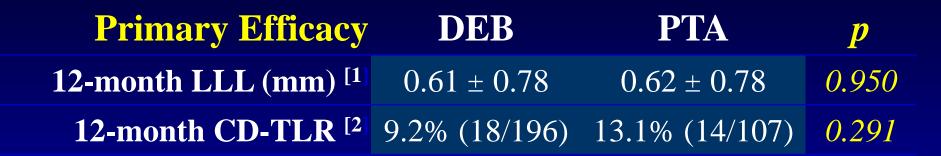
Below the knee DCB Where are we and what do we know?

Lawrence A. Garcia, MD *Chief, Section Interventional Cardiology and Vascular Interventions Director, Vascular Medicine St. Elizabeth's Medical Center Tufts University School of Medicine Boston, MA*

Disclosure Statement of Financial Interest

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.


Affiliation/Financial Relationship

Company

- Grant/Research Support
- Consulting (non-compensated)
- Major Stock Shareholder/Equity
- Royalty Income
- Ownership/Founder
- Intellectual Property Rights
- Other Financial Benefit

- Abbott, Covidien/Medtronic
- Covidien/Medtronic, Boston Scientific, Abbott
- Arsenal, Primacea, TissueGen, CV Ingenuity, Spirox, Scion Cardiovascular, Syntervention, Essential Medical
- None
- Innovation Vascular Partners, Consulting
- None
- None

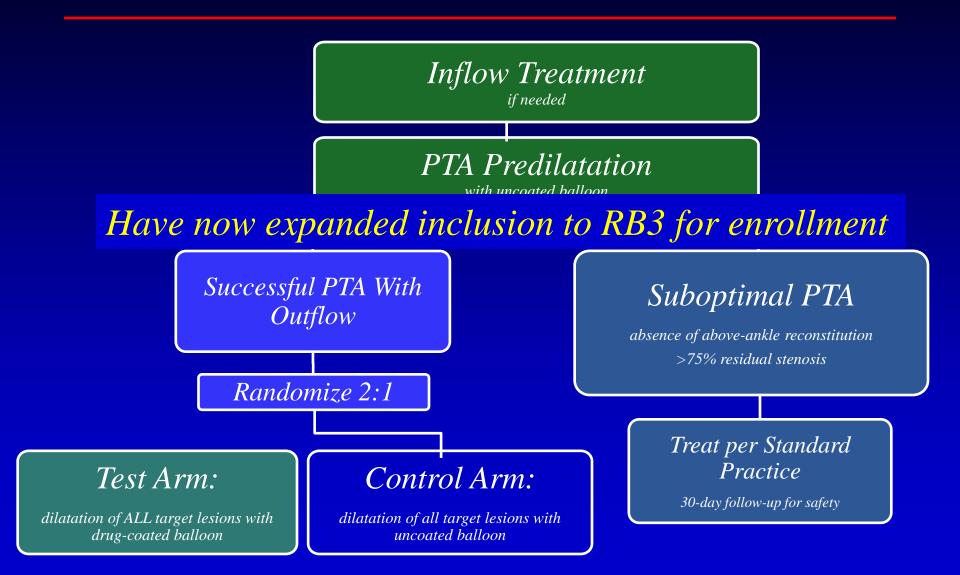
Primary IN.PACT DEEP Outcomes

Primary Safety	DEB	РТА	p
6-month Death Major Amputation or CD TLR	17.7% (41/232)	15.8% (18/114)	0.021 (non-inferiority) 0.662 (superiority)

1. Angio Cohort, Corelab adjudicated. Angiogaphic Imaging 12-month FU compliance = 70.9% (DEB) vs. 71.4% (PTA)

2. Clinically driven TLR of the target lesion in the (major) amputation free surviving subjects at 12 months. "Clinically driven TLR" defined as any TLR of the target lesion associated with: a) deterioration of RC and / or b) Increase in size of preexisting wounds and / or c) occurrence of a new wound(s), with b) and c) adjudicated by the Wound Healing Core lab

Angio Cohort Outcomes


	12-month Outcomes ^[1]	DEB	РТА	p
	Mean Lesion Length (mm±SD)	59.1 ± 41.7	79.7 ± 74.6	0.060
	Binary (50%) Rest. Rate (%)	41.0% (25/61)	35.5% (11/31)	0.609
	Occlusion Rate (%)	11.5% (7/61)	16.1% (5/31)	0.531
	Longitudinal Restenosis (%) [2]	62.7 ± 56.2	93.2 ± 60.8	0.167
Re	validated Lumen Loss ^[3]	DEB	РТА	р
12-	month LLL (mm, mean <u>+</u> SD)	0.51 ± 0.66	0.60 ± 0.97	0.654

1. Angio Cohort, Corelab adjudicated. Angiogaphic Imaging 12-month FU compliance = 70.9% (DEB) vs. 71.4% (PTA)

2. Mean % of stenosis length vs. treated lesion length± SD (Angiographic Cohort, ITT)

3. As evaluated by additional angiographic core laboratory (Beth Israel Deconess Medical Center, Boston, MA) to confirm earlier analysis

LEVANT BTK

Current Status of Lutonix 014 BTK IDE Study

•48 Active Sites—Completed enrollment

382 Randomized Subjects
 287 have completed 6 month follow-up
 222 have completed 12 month follow-up

12 subjects with a Major Amputation (3.2%)

The Data Monitoring Committee (DMC) has met over 11 times and unanimously recommended continuation of the study with no modifications.

Information current as of 03.06.2017

BIOLUX

- RCT 1:1 Paseo DCB to Paseo PTA
 72 patients
- Endpoints 30 day, 6 month (angio) and 12 MAE
- 6 month patency DCB 82.9% vs PTA 73.9% (p=NS)

Zeller T, et al JACC Cardio Interv 2015 Oct 8 (12) 1614-22

Calcification[†] 19 (55.9) 31 (81.6) None 0.018 Mild 6 (17.6) 4 (10.5) 0.501 0 (0.0) 1 (2.9) Moderate 0.472 1 (2.6) Moderate/severe 3 (8.8) 0.338 0.243 5 (4.7) 2 (5.3) Severe 3 (7.9) Moderate to 9 (26.5) 0.056 severe 0 (0.0) 0 (0.0) >0.999 Thrombus present **Treated lesion** 113.1 ± 88.1, 115.0 ± 86.9 , 0.960 length, mm 24-351 39-295

Time-To-Event Estimates of Clinical Outcomes at Follow-Up

365 Days	DEB	РТА	p Value
1804 Days	13 (41.1)	14 (39.1)	0.957
Death MAE In CLI patients only Death	$ \begin{array}{r} 3 & (9,4) \\ 8 & (24.8) \\ 2 & (8.6) \\ 2 & (6.1) \end{array} $	26.0) 2(7.9) 1(2.9)	^{0.575} 0.944 0.917 0.499
Amputation target In CLT patients extremity	§ (24:0)	⁹ (²⁵ 3.7)	^{0.9} 88921
extremity only Major Amputationts only toward outcomity	1 (3.3) 8 (423).7)	2 (5.6) 2 7 7(1) 9.6)	0.631 0.6 <mark>96</mark> 619
target extremity			
Major Lesion based TLR lesion Subject based	1 (3.3) 12 (30.1) 6 (14.6) 10 (34.9) 1	$\begin{array}{c} 2 (5.6) \\ 15 (30.6) \\ 10 (19.7) \\ 10 (30.0) \end{array}$	0.631 0.805 0.817 460
Subject based	5 (16 8)	9 (26197.5)	0.805881
TVR, subject based	5 (16.8)	6 (17.5)	0.881
Target lesion	(0.0)	1((2.8)	0. 8≱0.999
thnogenbosis	0 (0.0)	1 (2.8)	>0.999
thrombosis Patency loss Patency loss (lesion (lesion based)*	7 (17.1) 20 (50.8)	13 (26.1) 22 (45.6)	0.298 0.908

IDEAS

- Small RCT DES vs DCB
- Primary endpoint angio patency at 6 months
- DES PP 28% vs DCB 42%

 TABLE 3
 Angiographic and Clinical Outcomes: QVA and

 Outcome Measures at 6 Months (ITT Analysis)

	DES Group	PCB Group	p Value
QVA analys <mark>i</mark> s			
Post-procedure stenosis, %	9.6 ± 2.2	$\textbf{24.8} \pm \textbf{3.5}$	<0.0001
6-month vessel stenosis, %	50.6 ± 6.6	54.3 ± 8.1	0.73
Late lumen loss, mm	1.35 ± 0.2	$\textbf{1.15} \pm \textbf{0.3}$	0.62
Length of >50% restenosis, cm	$\textbf{3.6} \pm \textbf{1.5}$	4.3 ± 1.6	0.16
Outcome measures			
Binary restenosis >50%	7/25 (28)	11/19 (57.9)	0.0457
Positive remodelling, late lumen loss <0 mm	0/25 (0)	3/19 (15.8)	0.07
Target lesion revascularization	2/26 (7.7)	3/22 (13.6)	0.65
Rutherford class at 6 months	1 (1, 2.75)	1 (1, 3.5)	0.87

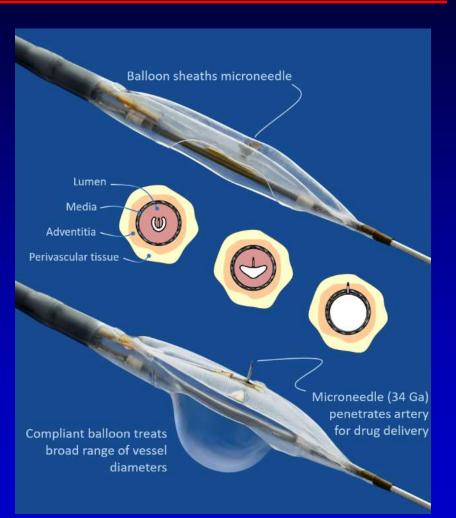
Siablis D, et al JACC Cardio Interv 2014 Sep 7 (9): 1048-56

Values are mean ± SD, n/n (%), or median (interquartile range).

Future trials

- BSC Ranger BTK
 - FDA approaved IDE Fem-pop study
- Spectranetics Stellarx BTK
- Interest in limus driven therapy

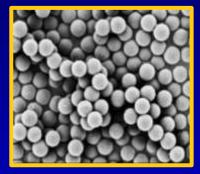
Possible Reasons for Failed Trials for DCB in BTK


- Drug does not work in BTK lesions
- Insufficient drug dosing in BTK studies
- Improper DCB sizing or insufficient duration of therapy
- PTX delays wound healing
- Loss of drug due to transit time
- Calcification impedes drug delivery
- Recoil effect in small vessels >>>Drug effect
- Endpoints have not been validated
- Heterogeneity of treatment in multi-center studies
 - Procedural differences
 - Differences in post-procedural wound care

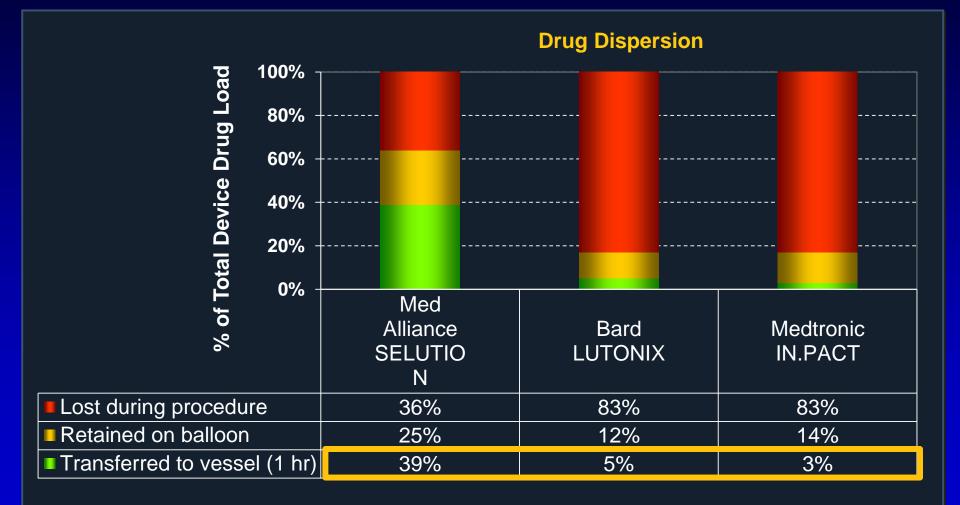
Injection platforms

- Bullfrog device (Merkatur, USA)
- TANGO
 - 60 pt CLI
 - 20 low/20high/20 control
 - 6 mo clinical and angiographic
 - 12 mo clinical and DUS outcomes

• LIMBO

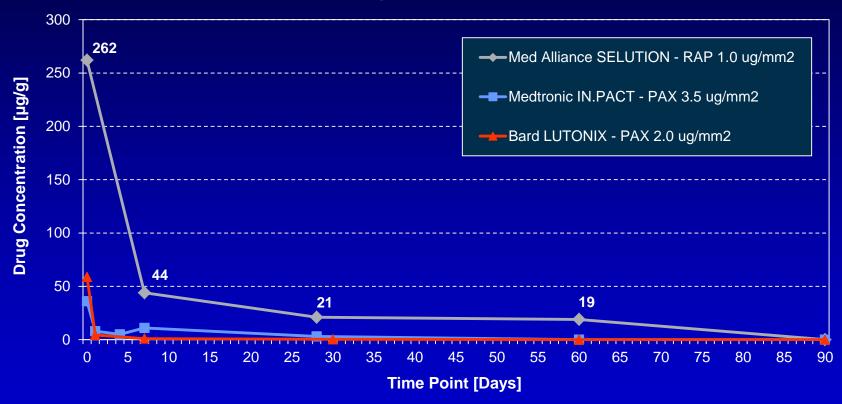

- 120 pt CLI
- 6 mo clinical and angiographic endpoint

- Proteon (Waltham, MA)
- Vonapanitase (elastase)
- Injection through Bullfrog device
- Destroys elastase thereby halting vaso-motor function
- Theory no recoil may have positive impact on clinical outcome
- Currently in Phase III study


Med Alliance SELUTION[™] Sirolimus DCB

- Micro-reservoirs made out of biodegradable polymer intermixed with Sirolimus:
 - Controlled and sustained drug release mechanism
 - Maintains therapeutic effect in tissue over long period of time

- Novel Cell Adherent Technology CAT™:
 - CAT[™] transfer membrane houses and protects micro-reservoirs during balloon insertion, lesion crossing and expansion
 - CAT[™] transfer membrane with embedded micro-reservoirs releases from balloon delivery system and adheres to vessel lumen with short balloon inflations


Med Alliance SELUTION[™] Sirolimus DCB

Med Alliance – In vitro test data on file Bard & Medtronic – Presentation J.F. Granada (TCT 2014)

Med Alliance SELUTION[™] PK Study

Mean Arterial Tissue – Drug Concentration (Sirolimus vs Paclitaxel)

Source: Med Alliance – PK Study (2014-004) / Bard – Catheterization and Cardiovascular Interventions 83:132–140 (2014) / Medtronic – Presentation Melder (LINC 2012).

Areas For Improvement

- Vessel preparation
- Improved balloon platform for optimal drug delivery
- Optimal Drug Dosing
- Optimal Drug Application
 - Crystalline>>Amorphous??
 - Nanoparticles??
 - Limus vs taxol
- Appropriate trial design
 - Primary Endpoint Patency vs Wound healing?
 - Patency easier to measure and reflects device performance
 - Wound healing is true desired outcome, but influenced by several factors not related to device being studied

What should we choose?

- All interventions afford AFS in short focal lesions
 - BMS primary patency poor
 - Focal DES excellent primary patency compared with BMS
- DCB (IN-Pact DEEP)failed in largest trial for below knee use
 - Principal studies using DCB still may be appealing but given the data?
- Current review of data supports revascularization for infrapopliteal disease though choice is at discretion
 - All DCB BTK data remain mired in the definitions and endpoints
 - Till this is well defined and accepted, seems PTA alone is best option
- Limus drugs appealing in early stage evaluations